AD-A219 591

LD gy E

T A
NPS 68-89-006 "UiDy

NAVAL POSTGRAGUATE SCHOOL
Monterey, California

SALINE IMPACT ON TIHIE CALIFORNIA CURRENT
SYSTEM
by

v

Christopher R. Gunderson

September 1989

Thesis Advisor Mary L. Batteen

Approved for public releasc; distribution is unlimited.
Prepared for:

Office of Naval Research

800 N. Quincy Street

Arlington, VA 22217-5000

90 03 23 065




NAVAL POSTGRADUATE SCHOOL
Monterey, CA. 93943

Rear Admiral Ralph W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research
conducted for Chief of Naval Research and Funded by the Naval
Postgraduate School.

Reproduction‘of this report is authorized.

Released By:

/hﬁ 24/&04-/

GORDON E. SCHACHER
Dean of Science and Engineering

e




Unclassified

security classification of this page

REPORT DOCUMENTATION PAGE

o 13 Report Security Classification Unclassified 1b Restrictive Markings
2a Security Classification Authority 3 Distribution Availabihty of Report
2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) NPS-68-89-006 5 Monitoring Organization Report Number(s) ]
Ga Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (if applicable) 63 Office of Naval Research
6c Address (clty, state, and Z1P code) 7b Address (clry, staie, and ZIP code)
Monterey, CA 93943-5000 800 N. Quincy St., Arlington, VA 22217-5000
8a Name of Funding;Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Identification Number
raduate School (if applicable) i i
8¢ Address (city, sraie, and ZIP code) 10 Source of Funding Numbers
Mgr;g , CA. 93943 Program Element No IProjecl No ITask .\‘tLL\\'ork Unit Accession No
11 Title (include security classification) SALINE IMPACT ON THE CALIFORNIA CURRENT SYSTEM (Unclassified)
12 Personal Author(s) Chiristopher R. Gunderson in conjunction with M.L. Batteen and C.S. Nelson
13a Type of Report 13b Time Covered 14 Date of Report (year, month, da-y-). 15 Page Count
Master’s Thesis From To September 1989 118

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block numper) o 2 N
Field Group Subgrou alinity, California Current, variance, density, anomaly, T he$1 ¢ ) Sea Waey, \
\ ,&()
N

19N bstract (continue on reverse if necessaPy, and ideniify by block number)

There are some indications that in Iyrge measure the density anomaly field of the California Current System (CCS) follows

temperature, salinity playing a significyntly lesser role. These indications have been used as justification for ignoring salinity

variations in dynamic models. An extensive data base of simultaneous temperature-salinity observations taken in the CCS

is used to calculate and assess the saline\contribution to specific volume anomaly, dynamic height, and density variance. The

results show that the distribution of salinjty can be important in defining the large scale circulation of the CCS, and that the
ariability can be quite significant

20 Distributicni Avaifability of Abstract 21 Abstract Security Classification

unclassified unlimited  [J same asreport 3 DTIC users Unclassified

223 Name of Responsible Individuai 22b Telephone (include Area code) | 22¢ Office Symbol

Mary L. Batteen (408) 646-3265 68Bv
DD FORM 1473,84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete

Unclassified




Approved for public release; distribution is unlimited.
Saline Impact on the California Current System
by
Christopher R. Gunderson
Lieutenant Commander, United States Navy

B.S., United States Naval Academy, 1977

Submitted in partial fulfilinent of the
requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY AND OCEANOGRAPHY
from the

NAVAL POSTGRADUATE SCHOOL
September 1989

Author: %Am/t/\m

Christopher R. Gunderson

Approved by: “m avu.4 X, Balleer_

L. Batteen, Thesxs Advisor
/éy / @ o

Craxg . \eLsan, Second Reader

( ; ('//J'ﬁa e ‘[v—é;»é‘///m_\

Curtis A. Collins, Chairman,
Department of Oceanography

Gordon E. Schacher,
Dean of Science aid Engineering

B




ABSTRACT

There are some indications that in large measure the density anomaly field of the
California Current System (CCS) follows temperature, salinity playing a significantly
lesser role. These indications have been used as justification for ignoring salinity vari-
ations in dynamic models. An extensive data base of simultaneous iemperature-salinity
observations taken in the CCS is used to calculate and assess the saline contribution to
specific volume anomaly, dynamic height, and density variance. The results show that
the distribution of salinity can be important in defining the large scale circulation of the
CCS, and that the local variability can be quite significant.
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I. INTRODUCTION: IMPORTANCE OF SALINITY

At a given pressure, the density of seawater depends on temperature and salinity.
Except for high latitude regions and near soufces and sinks of salt, tep~ erature is usually
considered to vary more than salinity in the upper ocean, and is generally considered to
be the major source of density variations (Pickard and Emery, 1982). Recently Cooper
(1988) has demonstrated the importance of salinity as a consideration in modeling
motions in the tropics. This result is surprising because in the tropics the thermal ex-
pansion coefficient, which increases with temperature and salinity, is large, and the
salinity contraction coefficient, which decreases as temperature and salinity increase, is
relatively small, and temperature variation might reasonably be expected to dominate
forcing of density differentials. Is it possible that salinity variability in the California
Current System (CCS), which is geographically between the polar regions and the trop-
ics, is also an important consideration for modeling dynamics? A close examination of
the southern CCS area in Figure 1 suggests that salinity variation could have as im-
portant an effect in the CCS as in the tropics.

The CCS is in the eastern quadrant of the North Pacific anticyclonic gyre, and, ac-
cording to Hickey (1979), is composed of four currents. The California Current (CC) is
on the surface and extends as far as 1000 km from the coast. A surface poleward flow
exists during the fall and winter north of Point Conception called the Davidson Current.
South of Point Conception, and inshore of the Channel Islands is another surface flow
called the Southern California Countercurrent. Finally, the California Undercurrent
(CU) is a subsurface poleward flow that occurs over the continental slope. Typical mean
velocities associated with the CC are on the order of 10 cm s, but superimposed on the
mean {low are small scale eddies and jets (Bernstein er al., 1977, Mooers and Robinson,
1984; Rienecker er al., 1985, 1988). The meanders can have wavelengths of several
hundred kilometers, can intensify and separate from the mean flow and can exist as
isolated cyclonic or anticyclonic eddies (Bernstein et al., 1977). Baroclinic jets, typically
~70 km wide, with peak velocities near 80 ¢m s-! are embedded in the eddy field (Mooers
and Robinson, 1984; Rienecker et al.,, 1985; Flament et al., 1985; Kosro and Huyer,
1986). Mean surface temperatures in the CCS range roughly from 10 to 20° C while

surface salinities increase from 32 psu in the north to 34 psu in the south.
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Figure 1. Dynamic Height of the Tropical Ocean 0/400 m: Calculated from
Levitus (1982) data. (a) Salinity sct to constant 35, (b) salinity varying
as in Levitus data, and (¢) difference between (a) and (b). Contour in-
tervals are 10 dyn cm in (a) and (b), and 5 dyn em in (c) (From Cooper,
1988).




A typical section across the CCS, from San Francisco Bay southwest to 33° N,
134° W (Figure 2), shows that isopycnals very closely follow isotherms, and intersect
isohalines. The implication is that temperature variation is much more important than
salinity variation in driving the density gradient. On the other hand, examination of
Figure 3, which depicts the coastal area of the CCS just north of Point Arena (at
~39° N and near the shoreward end of Figure 2) shows that at a depth of 100 m, about
a third of the cross-shore density gradient over a degree of longitude is due to salinity
change. In the CCS, unlike all other eastern boundary currents, salinity increases with
depth (Wooster and Reid, 1963). Therefore, if this cold, salty 100 m water were upwelled
to the surface, the resulting horizontal density gradient would be one third greater than
if the salinity profile were constant.

The approximate equation of state for seawater is:
p = poll = T = To) + B(S — So)], ()
which can be rewritten as:
Ap = — apoAT + fp,AS, (2

where « and f§ are the expansion and contraction coefficients for temperature, T, and
salinity, S, respectively, p is density, S, is the reference salinity (35 psu) and T is the
reference temperature (0° C).

This equation can be employed to get a rough idea of the large scale importance
of salinity if typical CCS values for T and S are used. Entering the International
Oceanographic Tables (UNESCO, 1987) for « and g with 15°C and 33 psu, and con-
sidering typical surface temperature and salinity ranges of 10° C and 2 psu for the CCS,
computations of the contributions of temperature and salinity to the density anomaly
are 10.5 and 7.5 kg m™, respectively. Annually, a mean temperature of 12° C plus or
minus 3° C variation, associated with a mean salinity of 33 with .3 psu variation, is
roughly characteristic of the central region of the CCS. Use of the 1987 tables here
shows a 1.7 and 2.7 kg m contribution to the annual density anomaly change for
salinity and temperature, respectively, over the course of a year., Vertically a mean
temperature at 500 m of about 5° C plus or minus 5° C surface to 1000 m, in conjunction
with an approximate mean salinity of 34, plus or minus 0.5 psu, vields density anomaly
changes of 7.2 kg m-* from temperature and 3.8 kg m from salinity.




These crude calculations seem to indicate that the importance of salinity variation
should not be summarily dismissed when considering CCS density gradients in any di-
mension. Yet often dynamic models of the CCS (e.g., Batteen et al.,1989) do not allow
salinity contributions to density gradients. What is the price of this omission?

The objective of this thesis is to address that question by investigating the saline
impact on the CCS. The data set used is described in Section II. A general description
of the characteristic salinity of the CCS is provided in Section III. In Section IV several
techniques are used to analyze the data. Mean values for cach of the constituents of the
thermosteric anomaly, 6,6, and ,,, are computed at various depths and analyzed. Mean
dynamic heights are computed from salinity and temperature observations and are
compared to dynamic heights computed from temperature and constant salinity values.
The equation of state for seawater is differentiated with respect to temperature and
salinity, variances and covariances of temperature and salinity are computed, and the

contributions of each to variance in the density ficld are determined. A summary of the

results is presented in Section V and recommendations for future work are in Section
V[‘
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Figure 2. CalCOFI Line 60, July: 33° N, 134°W, to 37° N, 123° W: (a) Tem-
perature (°C), (b) Salinity (ppt), (¢) Density Anomaly (from Lynn et al.,

1982).
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Figure 3. Temperature, Salinity, and Density Gradients: Ncar Pt. Arcna (39° N),
at 100 m depth: (a) Temperature (° C), (b) Salinity (ppt), (c) Density
Anomaly (from Huyer and Kosro, 1987).




II. DATA DESCRIPTION

A. SOURCES AND TYPES OF DATA

The data base used for all calculations was compiled by Dynalysis of Princeton, and
is described in detail in their final report to the U.S. Department of the Interior
(Blumberg er al., 1984). Coverage extends along the west coast of North America to
133 ° W, and from 20° to 50° N. Sources include the National Oceanographic Data
Center (NODC) historical data archives, the Fleet Numerical Oceanography Center
(FNOC) data files, California Cooperative Oceanic Fisheries Investigation (CalCOFT)
surveys which have been made systematically since 1949, and the Coastal Ocean Dy-
namics Experiment (CODE). CODE data are the most current, dating from as recently
as 1983, and cover the coastal area near Point Arena within a one degree square domain.
The highest density of NODC data is the result of obscrvations from Oregon State
University standard surveys along the “Newport” line (~ 45° N) and University of
Washington surveys of the Columbia River plume (46-47° N). Original files overlapped,
but the data have been carefully screened by Dynalysis to eliminate duplicate observa-
tions. The combined data set consists of over 300,000 data points with observations at
up to 33 standard levels to 4000 m. The more than 40,000 of these points which included
any simultaneous temperature and salinity observations at 500 m or above, were con-
sidered here, while those including only temperature were not used. Original observa-
tions of salinity were reported in units of parts per thousand (ppt) rather than practical
salinity units (psu). However, because the difference in units is very slight (Lewis and
Perkin, 1981) and not significant at the scales discussed here, the currently preferred psu
is used throughout this thesis. Most of the retained records are from CalCOFI surveys,
which were collected at average intervals of 74 km along lines spaced 74 km apart cov-
ering from San Francisco to Baja California (Reid, 1988). As a result the CalCOFI
collection defines for the most part the maximum resolution possible from the data set,
exceptions being along the Oregon coast, and near Point Arena, where finer resolution
may be possible. Generally the number of observations increases toward the coast, with
greatest concentration along the coasts of California and Oregon. There are very few
data more than 500 km off the coast or between 38° and 42° N. Discussion here is
limited to the area bounded by the extent of this data.




B. DATA MANIPULATION

For this study, data were placed in bins identified by one degree squares centered
at half degree latitude-longitude intersections, by month or season, and by depth level.
Information so cataloged is referred to as a data block throughcut this paper. Standard
depth levels 0, 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400, and 500 m were
considered. Choice of 500 m as the maximum depth level was made due to data avail-
ability and because the phenomenon of interest, the CCS, has been classically considered
shoaler than that depth, at least within 300 km of shore (Hickey, 1979). Choice of cne
degree squares was made again due to data availability; the CalCOFI sampling grid does
not support finer resolution.

Plots of the numbers of observations associated with each data block for the months
January, April, July and October are in Appendix A. When mean values and variances
were calculated, at least ten observations in a data block were required, except in the
calculation of mean dynamic height, where five observations were used. Mean values
generated {rom these numbers of observations were considered statistically signiﬁcant
and used unweighted in subsequent analyses. Weighting based on redundancy was not
applied to avoid biasing results in favor of areas of frequent observation. The determi-
nation of ten observations as statistically significant was done subjectively after studying
the data. Unfortunately specific years over which statistics for a given data block were
not considered, and a bias toward a particular year, or years, may well exist. For mean
dynamic height calculations, only casts which include temperature and salinity data at
all standard depths from the surface to 500 m were used.




III. CHARACTERISTIC SALINITY OF THE CALIFORNIA CURRENT
SYSTEM

A. GENERAL FEATURES

Along the west coast of the United States, sea surface salinity generally increases
from about 32 psu near the Washington-Canadian border to about 34 psu near Baja
California. At a given latitude salinity tends to be maximum at the coast, decrease off-
shore, then increase again at the western limits of the CCS (Figure 4). That is, the
isohalines describe a trough, the axis of which extends from the coast near the mouth
of the Columbia River near 46° 15' N to a point about 500 km off the coast at Baja
California. In the southwest corner of the CCS, approximately 700 km off the coast, the
isohalines are oriented northwest-southeast with a relatively tight gradient, of the order
0.1 psu in 40 km.

As mentioned earlier, the stratification of the CCS, unlike that of other eastern
boundary currents, has salinity generally increasing with depth. Profiles (Figure 35) are
marked by permanent haloclines: sharp and shallow, 150 m (Huyer, 1983) in the north
and less distinct and deeper, 200 m, to the south (Emery and Dewar, 1982). At 500 m
the mean salinity increases from 34.1 psu near 50° N to 34.5 psu near 20° N\,

B. VARIABILITY

The most dramatic seasonal change to the surface salinity in the CCS results from
river discharge. During the summer the only important sources of fresh water runoff
along the West Coast are the Fraser River, which discharges through the Straits of
Georgia and Juan de Fuca at 48° 30 * N, and the Columbia River at 46° 15* N. The
Fraser's fresh water is mixed deep and its signature lost, but the direct effect of the
Columbia is visible as far south as San Francisco (Huyer, 1983). During spring an area
of tight isohaline spacing, roughly 0.1 psu in 30 km, exists within ~500 km radius of the
Columbia’s mouth. Through the coursc of a year the area of tight gradient (Figure 4)
gradually decreases until by winter the strong gradient exists only in the immediate vi-
cinity of the mouth of the river and northward along the coast of Washington,

Using CalCOFI data collected as far north as San Francisco through 1978, Lynn
and Simpson (1987) have examined the physical characteristics of the CCS including
salinity. The salinity minimum is at the surface off the coast of northern California and
50 to 100 m deep in the Baja California region. Near southern California there is
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generally a minimum at the surface, but in the autumn a subsurface minimum appears.
Lynn and Simpson (1987) have noted significant correlations between the location of the
salinity minimum and the behavior of the CC. In January, a strong inshore poleward
current exists while the salinity minimum near Baja California is below the surface and
offshore of the continental slope. As this minimum moves inshore and to the surface,
the inshore flow becomes strongly equatorward. In October, the salinity distribution is
similar to that of January, but the inshore flow is equatorward. Elsewhere in the
CalCOFI region, the area of minimum salinity is consistently near, but seaward of, the
maximum equatorward flow of 4 to 20 c¢m s-'. Because of the high correlation of salinity
minimum to velocity maximum to a depth of 100 m, Lynn and Simpson (1987) suggest
that the low salinity core can describe the path of the CC.

12




IV. EFFECT OF SALINITY

A. STRATEGY

Several techniques were used to analyze the data and are described in the following
sections: specific volume anomaly (Section [VB), variance and correlation of the specific
volume anomaly constituents (Section IVC), mean differences of the specific volume
anomaly constituents (Section IVD), dynamic height (Section IVE), and propagation
of the temperature-salinity variance (Section IVF), Each method was applied at depths
10, 100, 200, and 500 m. Except in Section IVF, twelve mean months were examined.
In Section IVF the statistical techniques invoked called for use of maximum number of
observations, so the data were partitioned into three-month seasons; winter, for exam-
ple, was defined as January-March. Graphics, except where otherwise noted, were gen-
erated for all four depths, each time period, and each technique. Practical limits on
space prevent inclusion of all these plots in this thesis.I Only representative examples,
which when contnr:red were hand contoured, are reproduced in the body of the text. In
particular, the munth i’ July is often chosen as the illustrative period because the coastal
upwelling phenomenan is usually at its peak during that month.

B. SPECIFIC VOLUME ANOMALY
1. Method
Specific volume anomaly (defined: ¥ — Vg, where V is specific volume, and
subscripts in the second term indicate salinity 35 psu, temperature 0° C, and pressure in
db) can be expressed as a sum of constituents related to the parameters that define the
density of sea water:

8= (8,4 8y 85) + 50y + O3y + Supp

3
Mm@E @6 © G)

Subscripts t, s, and p stand for temperature, salinizv ~nd pressure, respectively. In this
linear construct, specific volume anomaly, also teyried steric anomaly, is the sum of a
part due to variation in temperature from 0° C, salmity other than 35 psu, their inter-
action, and the interaction of deviant temperature and salinity with pressure (Sverdrup

1 Unpublished data are on file at the Department of Oceanography, Naval Postgraduate
School, Monterey, CA.
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et al., 1942:57-59). Since the term J,,, is much smaller than the other terms, it is virtually
always ignored, and is not considered in this thesis. The sum of terms in parcnthesis
represents the total combined contribution of temperature and salinity calculated at
surface pressure, is called the thermosteric anomaly, A, and is by far the greatest con-
tribution to the total specific volume anomaly. Sverdrup (1933) introduced the use of
the thermosteric anomaly, which is easily determined in total from the mecasured or
computed surface density, as a computational convenience. After the density anomaly
calculated at zero pressure is converted to A,, only the two values J,,, and §,, are neces-
sary to determine specific volume anomaly.

Traditionally then, since Sverdrup (1933), only three tables (or calculations) are
used to determine 6. However, it can sometimes be quiie useful to know the individual
contributions to A,. For example, if §, is small or constant while J, is large and {luctu-
ating, a dynamic modeler might simplify his model by keeping salinity constant. Simi-
larly, if a feature can be defined by its salinity signature, an observationalist ...ight
identify the feature’s boundary by a sharp gradient in J, .

The equation of state for seawater:

_ Psw
p.ﬂp— (1 - P/k_"p) ’ (4)

where & is the secant bulk modulus and P pressure, translates to an equation for
thermosteric anomaly:

By = = 9.7266204 x 10 )
or
A= - —1 . ~ 97266204 x 107, (6)
(bw= D ") + SO bl + S et + doS?
n=0 nm=0 n=0

where p, is the density of reference pure water, a, b, and ¢ are coefficients in power se-
ries on temperature, and d, is a coefficient on salinity (UNESCO, 1987). This inverted
sum of terms in S and T, cannot readily be analytically sorted into parts due solely to
temperature, salinity, and their interaction. Therefore, some other means of defining
0, 6,, and J,, is needed, In UNESCO (1987) equation (3) is modeled by:
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dyp = dyyy + (d3sp — dis10) + (dsop — dsgo)
n @ O @ O (7
(a) () (c)

(Here d is used in lieu of & to alleviate confusion that might otherwise result when
comparing terms of equation (3) to terms of equation (7)). Clearly specific volume cal-
culated for a given salinity and temperature at surface pressure, d,q, is precisely the
thermosteric anomaly. Term (b), the difference between 4 calculated at temperature and
depth with salinity 35 psu and 4 calculated for the same temperature but at surface
pressure, describes the interplay of temperature and pressure, 8,, . Similarly, term (c)
represents 6, (Terms a, b, and ¢ correspond to UNESCO, 1987, tables I1I, V, and VI.)

Now, consistent with the currently accepted equation of state for seawater
(UNESCO, 1981), how does one model the individual constituents of the thermosteric
anomaly? Term (3) in equation (7) is the value of § that would result at zero pressure
if salinity were a constant 35 psu. Therefore (d,, — di;o) represents the part of é due to
salinity deviation from 35 psu and interaction of temperature with that deviation at a

certain pressure p , or:

dyp = dysig= (0 + 05y + 6,y + J5p)- (8)
Similarly:

dyyp — digg = (05r + 6,p + 655 + ). )

Subtraction of equation (9) from equation (8) vields:
8, — 05 = dy50 — digo- (10)

It would appear dy;o and dj, can serve as models for 4, and é,. Using that assumption,

equation (3) can be reconfigured from appropriate elements of equation (7):
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5r= d3510

‘Ss = dsoo
5:: =Ay— 5: - 5: = dstO - dss:o - dsOO
Opp=dyspp — disp (11)

6.\'p = dsOp —digg
dg,p = dysgg + dioo + (dyo — dysio — disgo) + (d350p — dys0) + (dsop — digo)-
1N @ A3) (@) (5)

Collection of terms shows equation (11) to be identical to equation (7) and therefore this
model to be consistent with the UNESCO (1987) table formulation. Descriptively this
formulation sheuld also be acceptable: the temperature contribution is defined as the
specific volume that would result from the observed temperature, if salinity were 35 psu
and pressure 0 db; the salinity contribution at the same depth is similarly the specific
volume anomaly that would result from actual salinity and 0° C; the combined term is
simply the difference of the sum of those two terms and A,, or the amount by which their
sum misrepresents A,

It follows that (J, + 6,) can be represented by dy,,, and (6, + 6,,) by d,,. It was
decided to use this combined temperature and temperature-pressure term in order to
compare total saline effect to temperature effect at a given pressure. As a notational
convenience, throughout the remainder of this thesis "d,” and "d5 ” will be used in licu
of “(6,+4,) " and “(5,+ 4,) " and be considered synonymous with “dy;,, “ and “d,,,.” In
this formulation, the term 6, = A, — 6, — 5 will include pressure effects. Since units
used to describe specific volume anomaly will in every case be 10-% 2 kg~!, they will
hereafter be deleted in the text.

2. Results

For each month and the depths 10, 100, 200, and 500 m, each of the ficlds 6,
ds, and 4§, were computed and plotted (see note 1). Generally, the specific volume
anomaly field consists of a dome centered near 45° N, 124° W, a depression centered
near San Francisco, and a ridge parallel and adjacent to the Baja California peninsula
with axis south to north about 3° longitude from shore. In July (Figure 6) all three
features are well established. The Columbia River outflow is at its peak during late June
and early July (Huyer, 1983), and the warm, f{resh surface plume results in enhancement
of the northern dome. July is also a period of strong coastal upwelling (Huyer, 1983),
and the cold, salty upwelled water results in intensification of the central depression.
The horizontal gradient in 6 decreases with depth, particularly in the northern region.
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At 100 m (Figure 7) for example, there is no evidence of the warm, fresh core so pre-
valent on the surface. At 300 m (Figure 8) the gradient is very weak everywhere with
dense cores centered about 2° off the coast at San Francisco and the northern Baja
California peninsula. An important observation is that &, (Figure 9) values are one to
two orders of magnitude less than the sum of §; (Figure 10) and J; (Figure 11). This
shows the steric anomaly to be very nearly equal to the sum of a temperature and
salinity part so that this formulation is an effective linearization. In all cases J,, is neg-
ative, increasing slightly in absolute value with depth; values of -3 to -6 being common
at 10 m and -6 to -9 more typical at 500 m (Figure 12). Gradients in §,, are everywhere
small; however the cross term becomes more negative in areas where temperature and
pressure act together to increase d, and less negative when temperature and salinity act
in conjunction to decrease 5. When salinity and temperature oppose change in specific
volume anomaly, J,, remains nearly constant; the temperature-pressure interaction acts
to mitigate change in specific volume anomaly that results from changes in either.

Advection of subarctic water south from the point where the North Pacific
Current feeds the CC, results in cold (low 4,) and fresh (high J,) tongue-like structures
superimposed on the other characteristic features of the CCS described in part below.
In the immediate vicinity of the coast, salinity and temperature act together to decrease
steric anomaly. Near the surface this is most apparent just north of San Francisco Bay
in July where large scale upwelling results in cold, salty water. The effects on density
of temperature and salinity are positively correlated with specific volume anomaly near
45° N, 127° W, where the warm, fresh discharge of the Columbia River results in the
geopotential dome described above. This feature is strongest in sumu.ier, weakest in
winter, and most apparent in the s field. Such seasonality is in keeping with the
Columbia River’s outflow cycle. There also persists a fresh dome at the mouth of the
Strait of Juan de Fuca, but it is restricted to the immediate vicinity of the coast. (Since
the fine scale salinity-temperature interplay associated with the drainage from
Vancouver Island is not resolvable on the coarse scale used here, activity in that area is
generally not included in discussion here.)

Near the surface, throughout the year, mean gradients of §; across the CCS
(neglecting small scale features like those described above) are at least 50 percent greater
than those of 4;. At a depth of 10 m, absolute valucs of §;, which range from about 80
to 400 north to south through the year, fluctuate more season to season and are gener-
ally larger than values of 65 which range typically from 50 to 250. However the gradient
in 6 diminishes more rapidly with depth than does that of §; ; the result is that at
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Figure 6.  Steric Anomaly, July, 10 m:  Units are 10 m* kg, and the contour
interval is 10 units.
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500 m, 6, (Figure 13) and d5 (Figure 14) ficlds arc virtually mirror images of each other.
At that depth, ranges of 40 to 70 are typical of s, as compared to 45 to 75 for 4, At
an intermediate depth of 100 m, ranges from 65 to 190 and 70 to 130 correspond to
(Figure 15) and d; (Figure 16), respectively, while ranges of 60 to 135 and 40 to 85 are
representative of d, (Figure 17) and d; (Figure 18) at 200 m. The salinity signature of
the Columbia River is practically gone at 100 m. In fact, in the region north of 43° N,
from 100 m down, gradients in both the J, and J; fields are with one exception consid-
erably weaker than in southern areas. The exception is a d; maximum at 200 m during
October in the data rich area near 44° N, 127° W (Figure 19). This unexplained, but
possibly real (the central value is based on 22 observations although surrounding mean
values are from as few as 10) mean feature supports a gradient of 8.2 x 10~ m® kg-! in
one degree of longitude, which is comparable to the strongest gradients anywhere in the
CCS at that depth and much stronger than any other in the northern sector.

At 100 m, and to a lesser extent 200 m, a meridional tongue of 6, with its axis
just offshore is apparent. That is, there is a pronounced offshore cold core adjacent to
the California coast. Cyclonic flow around this feature is consistent with nearshore
subsurface poleward flow typical of the C{ &

C. VARIANCE AND CORRELATION OF THE SPECIFIC VOLUME ANOMALY
CONSTITUENTS
1. Method

Often the absolute value of a quantity is of less importance than the nature of
the temporal or spatial derivatives of that quantity. Statistics generated from a signif-
icant number of observations can provide information concerning those differentials.
Deviation from local mean values can cause changes in local gradient or prevent change
in local gradient when neighboring values change. In a flow supported by tight gradi-
ents, small meanders result in relatively large changes in local values. The actual vari-
ance2 of a field is a descriptor of likely deviation; therefore, in a data block, large
variance may indicate large gradient or large variability in the local gradient. The precise
effect on instantaneous gradient, of course, depends on behavior of, and correlation
with, neighboring data blocks. For example, if all nearby mean values change in tandem
with each other, the gradient would remain constant and “"no change” in gradient would
resuit from variance. Without thorough knowledge of the nature of the field of interest,

2 \Whether or not the sample variances calculated here are valid representations of true vari-
ance in the various fields is a relevant question. Section IVF1 addresses this point in detail.
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it is impossible to quantify gradient from sample variance calculation, and the fact that
two data blocks have identical variance does not mean that they have identical gradient.
However, determination of the contribution of various constituents to the total variance
provides strong indication of the contribution of those constituents to the development
of the field of interest. It is with this caveat that the following analysis technique is used.

Variance of the specific volume anomaly field results from the density changes

_that can be key to momentum balances. To evaluate the importance of saline variance

to specific volume anomaly variance, o}, (variance in &) should be compared to o}
(variance in 8). Because equation (3) is linear, it is tempting to try to represent the
variance of & as the sum of the variances of the constituents. If this were possible,
comparison of ¢3_(variance in dr) to o3, for example, would show at a glance how much
of the total variance is due to temperature variance alone. That is, whenever the ratio
0},/o} remains constant and large, approaching one as an ideal limit, salinity variance
could be deemed unimportant. Conversely if o} Jo} varies significantly over time or
space intervals of interest, salinity variance could be considered important. However,
because the constituents of specific volume anomaly are not independent of each other,
this approach is not valid. The covariances play an essential role in determining the
variance of the specific volume anomaly field. Therefore, to evaluate a term on the right
hand side of equation (3) as a potential estimator of §, in addition to variance compar-
ison, it is necessary to determine how that term correlates with d. If, for example, d; is
highly correlated with J, then most of the variance in § can be accounted for by a linear
relationship with 6, If also the variance of &, is of similar magnitude to that of 4, then
dr can be considered a good estimator. After all, if § changes when &, changes, in similar
amounts and directions, then &, would be expected to model é well. If that is the case,
a similar look at the behavior of d¢ will probably show it contributes little to total vari-
ance, and salinity might be considered unimportant to the development of the specific
volume field.

The correlation coefficient is useful as an indicator of the degree of correlation
but more useful as an indicator of the sign of the corvelation. The coefficient of deter-
mination, on the other hand, tells exactly how much of the variation in one variable is
a result of a linear relationship with the other (e.g., Walpole and Myers, 1985).

These ideas can be used to evaluate the validity of the use of temperature alone
to determine density. Wherever §; is highly correlated with 4, and has variance of sim-
ilar magnitude, modeling § with é, (or p with p(7)) should give acceptable results. If
o is highly correlated and its contribution to total variance nearly constant, even if not
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precisely the same magnitude as total variance, a 6, density model might still be ac-
ceptable because it will predict a representative gradient that will differ from the true
gradient by a nearly constant factor.
2. Results
Variances of §, d,, and §5; were computed for each level of cach data block, as
were the covariances, o;,; {covariance between 6, and §) and o, (covariance between
dsand 0 ). Correlation coeficients between 6 and d; (ry,) and 6 and J; (r,) were also

computed:

. (12)

050
where x represents either d; or 6;. In addition, coefficients of determination, r}, and
ris (as used in Figures 22-29) were calculated.

Maps of determination coefficients (given the sign of the correlation coefficient)
for all months and the depths 10, 100, 200 and 500 m were evaluated (see note 1).
Multiplication of the variance in d; , by r},, determines how much of the total variance
in ¢ is due to variance in §,. Below about 100 m, variance in the ¢ field is very small,
too small to allow confidence of statistical significance. Analysis of é; and §; corre-
lations with 6 is therefore limited to the upper 100 m. Generally §; (Figure 20,
Figure 21) is more highly correlated with é than is §;. Correlation between d5 and &
(Figure 22, Figure 23) is usually quite weak on. the surface and stronger, although not
as large as r},., at 100 m. These statements are true only in a very general sense. For
example, frequently in both fields very high or low correlations exist in the immediate
vicinity of each other. Another exception is that, as expected, immediately offshore of
a freshwater source, d; correlations are occasionally weak, or nonexistent. Usually when
the d; correlation is weak, the d¢ correlation is very high. For example at 10 m in Feb-
ruary at the mouth of San Francisco Bay, r},, (Figure 24) is 0.0 while s}, (Figure 25) is
1.0. Both correlations can be very high, predictably, for instance, in the Columbia River
plume, where warm, fresh water results in high specific volume anomaly. On the other
hand, the opposite situation exists well offshore of Baja California, near Guadalupe Is-
land. There, in late winter and spring, very low &, correlations (Figure 26) coexist with
very low r}s values (Figure 27). Variance in both 5 and é; is very high in relation to
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d, but the two are so strongly in opposition that neither correlates well with the total
variance.

Throughout the year, within a two or three degree radius of 31° N, 119° W in
the upper 100 m, rj;_ (Figure 28) is consistently near 0.9 and the variance in J;
(Figure 29) accounts for a reasonably consistent part of the variance in 6. Perhaps in
this area, the assumption of constant salinity would introduce minimal error in a density
model.

D. MEAN DIFFERENCES OF THE SPECIFIC VOLUME ANOMALY
CONSTITUENTS
1. Method

If an observed quantity, x, is modeled by a predictor x*, then (x — x') can be
considered the error associated with a single observation. If that error is squared to
eliminate sign bias and the sum of such squared error averaged, the square root of the
result can be used as an indicator of the expected deviation and is termed the Root Mean
Square Error (RMSE). The RMSE normalized by the mean value of x then provides
an estimate of the magnitude of the expected error in terms of percent of the “correct”
value. If ¢ is the observed quantity and 4, the predictor:

n

(6~ 5.%
")

£l 3 = RMSEomar (13)

If for example x is T, the result, RMSE(T), provides an indication of how well é, ap-
proximates ¢ in a particular data block.
2. Results

Normalized RMSE values were calculated for 6, and d;. As discussed in section
IVB, both §; and d; are everywhere greater than zero and each greater than the absolute
value of the sum of the remaining specific volume anomaly constituents. Therefore 6
and d; are necessarily less than 8, and the sign of the expected error is known (the “root”
and "squared” point of the RMSE technique is moot, and RMSE is equivalent to mean
difference). The specific volume anomaly will always be underestimated.

As discussed earlier, it is the gradient in the error field that is likely more sig-
nificant than magnitude of a single error. all, use of the actual mean salinity rather
than standard 35 psu can remove a constant offset. The plots of RMSE(T) provide a
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clear large scale picture of the price of neglecting salinity variation in specific volume
anomaly calculations (e.g., Figure 30). Near the surface that neglect would result in a
40 to 50 percent underestimation in the north-south gradient, and a 10 percent under-
estimate west to east, with the largest errors tending to occur in winter months. The
meridional gradient persists but decreases to a year-round 20 percent at 500 m
(Figure 31).

Because 4, and 5 are by far the greatest contributors to total J, data block
values of RMSE(S) added to the corresponding values for §, usually are nearly equal to
one (compare Figure 32 to Figure 30). Nevertheless, d; mean difference plots are il-
lustrative of the part d; plays in determining total steric anomaly. The large scale op-
position of gradients in d; and J4, in virtually every direction, is clear from analysis of
these distributions. At 500 m, in the southern section of the CCS there is a pronounced
increase in the zonal gradient in the 63 RMSE field (Figure 33), salinity making a larger
contribution to ¢ offshore than nearshore. Some smaller scale complexities are also
discernible. For instance, near the surface, across the mouth of San Francisco Bay in
September (Figure 34), there is a twenty percent change in the J; contribution to J, ac-
companied by a very flat gradient in RMSE for ;. This phenomenon is illustrative of
the local nature of saline variability, and temperature-salinity interaction in the CCS.

An interesting result of this analysis is that there are large areas, virtually any
six degree latitude by four degree longitude block, where the assumption of no salinity
variation would apparently result in less than a ten percent error in the resultant specific
volume gradient. That is particularly true if areas immediately adjacent to the coast are
excluded.

E. DYNAMIC HEIGHT
1. Method

Dynamic height, O, is a measure of how the density of a column of water differs
from the density of a standard column of the same depth and is calculated by integrating
the specific volume anomaly over depth from an assumed layer of no motion to a depth
of interest. It is the horizontal gradient in dynamic height that determines the
geostrophic velocity field. If the contributions to that gradient from salinity are signif-
icant, they should be considered when momentum calculations are performed. If the
mean differences (5_—5—,), where (—) denotes the mean, in columns are integrated with
respect to pressure, the resulting horizontal distribution is a good measure of the effect
of salinity on the geostrophic velocity field. That is, contours of & — My, = O define
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mean geostrophic flow that will not be accounted for if ; is used as an estimator of 4.
Therefore, if gradients in the difference field are large, salinity is important.
2. Results

Plots of monthly mean values of @, ®,,, and O, obtained by integrating from
an assumed layer of no motion at 500 m, to 200 m (200,500), 100 m (100,500), and the
surface (0,500) were plotted and evaluated. The ® results, where they overlap, are in
ve:y close agreement with those of Wyllie (1966). Standard deviations are in virtually
every case considerably more than an order of magnitude less than mean values. Even
so, this small variance still indicates that contour locations are doubtful by more than
the width of a contour interval on these maps. Therefore, any conclusions drawn con-
cerning small scale features are suspect. It should also be remembered that these are
maps of mean fields, representing climatology rather than instantaneous flows.

Examination of the 0,500 dynamic height field of the CCS (e.g., Figure 35 and
Figure 36), lcads to division of the arca into three regions. North of 43° N the diver-
gence of the North Pacific Current and freshwater discharges from the Columbia River
and Strait of Juan de Fuca result in disorganized mean geostrophic gradients. A split
of the flow toward the north and south is superimposed on weak circulations around
warnm, freshwater plumes. The area along the U.S. coast from 30° to 38° N is dominated
by cyclonic geostrophic circulation inshore, and flow generally to the southeast offshore.
The strength of the southward flow and degree of cvclonic turning onshore is seasonal.
Southward flow is strongest in summer and weakest in winter. Conversely, onshore
cyclonic turning is least in summer, greatest in winter. There is another cyclonic center
just offshore of Baja California ncar 25° N, Again the cyclonic departure from a gen-
erally southeastward {low is seasonal as described above. For each month the dynamic
height difference ficlds (D) (Figure 37) show inclusion of horizontal salinity gradients
to be responsible for a nearshore, equatorward geostrophic component from San
Francisco to San Diego and a southwestward flow along the coast of Baja California.
This predictable geostrophic pattern is due to the persistent salinity pattern: fresh to
saline, offshore toward shore, with a more meridional, fresh to salty north to south,
gradient in the southern section. What is even more interesting is the fact that
throughout the year, the magnitude of the anomalous {low implied by the @' field is on
the same order as flow associated with VO itself, and perhaps greater in some areas than
the magnitude of the flow predicted by Vi, (compare figures 36-38).

In the northern region, in each month, Vd,,, fails to account for a persistent
south-southwestward component from the mouth of the Cojumbia River that varies in
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intensity with the magnitude of discharge from that river. However, seaward of that
southward component the difference field is very slack. That is, the dynamic height field
estimated from temperature gradient alone very nearly accounts for the geostrophic flow
pattern in the region where surface salinity has the largest annual variance. This ap-
parent contradiction is explained by the fact that the horizontal salinity gradient here
decreases rapidly with depth. At depth. throughout the year, there is virtually no sig-
nificant salinity gradient in this northern area. At 200 m for example, over a distance
where mean temperature may vary by 0.4° C, salinity changes less than 0.1 psu. In the
southern area, by contrast, a 0.5° C temperature change is accompanied typically by a
change of 0.3 psu. The result is that in the north, the depth integrated effect of salinity
on geostrophic flow only approaches that of temperature in the immediate vicinity of the
sharpest upper level salinity gradient.

Analyses of dvnamic height and geostrophic flow at other levels (e.g., 200,500
and 100/500 m, Figures 39-44) show relative gradients very similar to those previously
discussed. V' is of similar order as V@ and Vd,,, at all depths, and the general pattern
of the difference field persists with depth. North of northern Baja California, the differ-
ence field shows a strong offshore-onshore gradient indicative of higher salinities inshore
in the poleward flow. This result is consistent with the idea that the poleward flow can
be traced by its high salinity (e.g., Lynn and Simpson, 1987). That is, the inshore
poleward undercurrent may carry the saline signature of Equatorial watcr which is to the
south of the CCS. That salinity increases significantly toward the south is evident from
the fact that south of about 34° N there is a strong alongshore north to south gradient
in the difference field. The southward salinity increase is also apparent in the salinity
fields (Figure 4). The 100/500 and 200,500 m dynamic height calculations show in-
creased cyclonic turning associated with the large scale California coastal features de-
scribed carlier. That is, the dense cores associated with what look like “c” shaped troughs
centered at the California coast and Baja California peninsula on the 0,500 m plots move
offshore with depth so that at 200 m, and possibly even at 100 m, a closed geostrophic
circulation with coastal poleward flow exists. Because of the neglected zonal salinity
gradient, @y, greatly overestimates the strength and horizontal extent of the poleward
flow.

Duc to the absence of the freshwater runoff below the surface, the divergence
of the North Pacific Current is relatively clear on the 100,500 and 200,500 m piots. This
divergence area secems to be farther south in the winter than summer, as noted by
Pickard and Emery (1982). Although the divergence occurs in a region of gencrally poor
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data coverage, the seasonai migration seems to be from near 40° N in the winter to
45° N in summer, rather than the 45° N to 50° N range reported by Pickard and Emery
(1982).

The focus of this thesis is large scale; however, using the rule of thumb that
features whose wavelengths exceed 2 grid points in extent may be resolved, it may be
possible to use these calculations to gain insight into some relatively small scale features.
In Appendix B, discussion of some smaller scale effects of salinity on dynamic height in
the CCS is provided.

F. PROPAGATION OF T-S VARIANCE THROUGH THE EOS
1. Method
An altcrnate approach to examine the relative importance of constituent vari-
ance to density variance is to propagate the variance associated with each of the inde-
pendent variables through the complete nonlinear equation of state. By the chain rule,
if density is strictly a function of salinity, temperature, and pressure then:

ép op ép
Ap = 2 Ar+ 7S As + 3p Ap, (14)

where (A) indicates departure from mean values and p is mean density. Because all ob-
servations are on standard depth levels and pressure changes on those levels are small,
even in comparison to crror associated with depth determination, Ap can be neglected.
Squaring both sides of (14), summing over a number of observations, and dividing by
the number of observations less one (e.g., Greenwalt and Shultz, 1962) leads to :

s _(Bpa Bpa B0 b
ap—'( a[ )Or-r-( 65 )O'S+2( (33 )( 6( )Usn (15)

where o? represents variance (either sample or population), ¢ denotes covariance, and
subscripts represent variables to which the statistic applies. As demonstrated by
Lillibridge (1989), the equation of state, EOS(80), a polynomial, is relatively easy to
differentiate. Therefore the contribution to 2 from temperature, salinity, and their
interaction is casily determined over any interval of interest. This technique can be as
readily applied to specific volume or any of the specific volume anomaly constituents
and is desirable because it employs the {ull nonlinear equation of state. Insofar as the
statistics used arce accurate estimators, the equation of statc itself accurate, and the
pressure fevels constant. the expression is valid. The method is particularly useful when
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Dynamic Height, 100/500 m, July: ®, the contour interval is 0.2 and
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Figure 40.  Dynamic Height (Salinity 35), 100/500 m, July: Dy, the contour in-
terval is 0.2 and units arc dynamic decimeters.
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temperature and salinity ranges over a time-space interval of interest arc reasonably well
known and a quick assessment of the relative importance of constituent variances de-
sired. It also is computationally quite efficient because the equation of state need only
be invoked once to determine total and constituent variance over a sample of interest,
Let the terms on the right hand side of equation (15) be represented as:
o2 = p Yo

Py

o ot 4

ép
af,’= —é:_-)zo? (16)
ép . Op
o, = A5 Nz, )ose

As mentioned earlier, to increase the number of observations and hence statistical va-
lidity, these data block variance estimates were computed over three-month seasons,
with winter defined as January, February, March. )

Potential energy (PE) of a column of water can be determined by integrating
PE = pgz, where g is the acceleration due to gravity, considered constant, and z is height
above some reference level, over depth (e.g., Fofonoff, 1962). It follows that on a con-
stant depth level (or very thin layer) p is the only variable in PE, and the horizontal
density fieid can be used to represent potential energy. Change in the density ficld, either
over time or distance, then represents change in the potential energy ficld. Equivalently,
variance from the mean density field can be considered as an indication of energetic ac-
tivity or potential. In general, relatively high density variance should correspond to
relatively high energetic activity. Therefore, if sample variance computed over some time
or space interval is an accurate estimator of the true density variance, sample variance
may provide indication of energetic activities. Dantzler (1977) used similar statistical
techniques applied to vertical excursions of the thermocline to calculate North Atlantic
potential energy levels.

2. Results

Maps of ¢} and percent contributions of salinity, (a2 /o? x 100), temperature,
(03/0% x 100), and covariance, (q,, /a3 x 100), were evaluated. Near the surface, large
density variance occurs in arcas of maximum fluctuation in precipitation, heating, or
freshwater influx for example. Accordingly, Figure 45 indicates high variance near the
Columbia River outflow, and in the upwelling region along the coast of California. As
expected, salinity variance is dominant in the Columbia River plume (Figure 46). Also

65




as anticipated, in the upwelling region, temperature and salinity effects (compare
Figure 47 and Figure 46) are positively correlated and of similar relative importance to
total density variance. These near-surface observations are consistent with results al-
ready presented and so provide evidence that this technique may be valid.

Away from the surface, areas of highest indicated variance may be dynamically
active regions in the CCS. Regions of maximum ¢2 might correspond to the mean po-
sitions of currents or eddies. If so, equation (15) can be used to determine the relative
contributions of temperature, salinity, and their interaction, to the CCS itself. In sup-
port of this idea, the locations of maximum o2 seem to more closely correspond to CC
and CU locations as depth increases. For example areas with o? at least twice as high
as ncighboring data blocks at 200 m (Figure 48) correspond reasonably well with the
arcas of tight gradient in ® (200,500 m) apparent in Figure 42. In the regions of high
variance, salinity, with variance ratios (¢2)/c3 typically {rom 50 to 200, seems to con-
tribute more to total variance than temperature, with variance ratios (o2 /¢2) in the high
total variance region of 5 to 150. At 500 m, salinity contributes virtually all of the density
variance (Figure 49) in a region that resembles the characteristic cyclonic circulation of
the CCS. The high correlation of saline contribution to density variance indicates that
the density gradient is largely due to salinity gradients at this depth. Figure 50 shows
some areas at 500 m with total density variance values on the same order as at 200 m
and these areas have values at least twice as high as neighboring data blocks. The lo-
cation of these regions match the location of some of the energetic portions of the CCS
discussed above. These observations provide evidence that the density gradient at
500 m may be significant and is largely induced by salinity gradients. This speculation
is consistent with that of Lynn and Simpson (1989).

If quarterly mean values of salinity and temperature are substituted for ¢t and s
in equation (13), and statistics are generated from thesc mean values by summing across
the length or width of the CCS, equation (16) will represent contributions of salinity,
temperature, and their covariance to the total density variance and may indicate their
importance to the mean density gradient. Such calculations were performed to obtain
statistics cross-shore at each latitude that had at least five seasonal means of at least 10
observations, and alongshore. across data blocks ecquidistant from the coast.
Alongshore lines are numbered 1 to 8 from inshore out, and cross-shore lines are iden-
tified by latitude (Figure 51). The resulis at the surface and 100 m were plotted as
histograms. Inshore, alongshore lines 1 (Figure 52) and 2 (Figure 53) show large vear-
round total variance at the surface. In the northern sector where line 1 crosses the
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Columbia River outflow region, the greatest surface contribution is clearly from salinity.
On this line even at 100 m, salinity variance dominates alongshore except in winter when
temperature variance is apparently slightly more important. Line 2, which is influenced
by runoff the length of the California coast, as well as by Columbia River outflow, shows
surface salinity as most important in fall, and a strong saline signature year round. At
100 m, temperature is clearly dominant in the low runoff, winter season, and at least of
equal importance the rest of the year. Northern cross-shore sections (only sections at
46°, 47°,49° N in the autumn, and 26°-35° N met the minimum number of observations
criterion) show salinity variance as key during the fall (e.g., Figure 54).

Alongshore, the covariance is always negative, as must be expected when the
large scale opposing meridional trends in temperature and salinity are considered.
Cross-shore, except in the northern area where warm, fresh Columbia River outflow re-
sults in strong positive interactions, covariance tends to be less important and of either
sign, reflecting the variability of the nearshore waters (e.g., Figure 55).

Cross-shore variance at 100 m is very small in the north, generally an order of
magnitude less than the 0.1 to 0.5 (kg m-3)* typical at the surface. In the south, cross-
shore variance at 100 m is of comparable magnitude to that at the surface.

Histograms generated for arcas where relative contributions to density variance
of temperature, salinity, and their interaction are the same will have similarly shaped
histograms. Therefore, it is reasonable to expect that, in the same water mass, areas
undergoing similar energetic processes will have similarly shaped histograms. This
reasoning implies that if the shape of the histogram for a particular section is the same
at the surface and 100 m, the two levels may well be undergoing the same dynamics
and/or thermodynamics; that is, they are dynamically coupled. In the autumn, the
graphs for areas south of 31° N at both depths are very similar in shape (e.g.,
Figure 36), indicating such coupling may exist. Perhaps surface cooling which occurs
during the months of October through December results in deeper mixed layers south
of 31° N\,

In this southern region, except when total variance is very low, temperature
provides the largest contribution to cross-shore gradients. There is a tendency for
greatest temperature variance, and therefore total variance, to occur in fall, further evi-
dence that surface cooling is greatest during that period.

Alongshore lines also show a noticeable, if less pronounced, increase in variance
during the autumn. During that season, the alongshore sections scaward of line 2 show
the surface and 100 m lavers to be well coupled the length of the CCS (e.g., Figure 57).
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Again a possible interpretation is that surface cooling in the fall results in deeper mixing.
If this interpretation is valid then mixing occurs offshore for the length of the CCS.

It may be argued that over any areas or periods where the relative contributions
to total variance remain constant, a density model based on temperature alone can ac-
curately represent gradients, erring only by a constant factor. In that case, intersections
of a group of adjacent alongshore sections sharing a characteristic histogram shape, with
a group of cross-shore sections that have a common histogram shape, will highlight such
regions. Subject to individual interpretation, some seasonal combinations of lines 2-5
and 26-31 may meet the criteria. For example, the autumn histograms for lines 3
(Figure 58) and 4 (Figure 59) are nearly the same shape, as are the autumn graphs of
lines 27, 28, and 29 (Figure 60, Figure 56 and Figure 61, respectively). The implication
here is that during October through December, at least in the upper 100 m, within an
area 2°-4° from shore, between 27° and 30°N, a temperature-only density model would
overestimate the alongshore gradient by a constant small factor and underestimate the
cross-shore gradient by a similar amount. Again the indication is that offshore, in select
three or four degrec blocks, salinity variance may not be essential to an accurate model
of the dynamic field. (Using this technique to generate shorter alongshore cuts, of
lengths similar to the cross-shore cuts for example, might result in the identification of

more of these arcas.)
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to total density variance (labeled T) by temperature (1), salinity (s), and

their interaction (t/s) are depicted here by scason at the surface and 100

Alongshore Line 3, Contributions to Density Variance: Contribution

m. Units of density variance here are (kg m=)2,
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Figure 60. Cross-shore Line 27, Contributions to Density Variance: Contribution

to total density variance (labeled T) by temperature (t), salinity (s}, and

their interaction (t/s)-are depicted here by scason at the surface and 106

m. Units of density variance here are (kg m-)2,

84

g




.....

04
03
0.2

oAl

0.7?
S

03

oA

04

[+ %

0.2}

Ju.Mnl

Apt=dun

s

Jul=8en.

Surface

Oct=Dec o

i

T

t 8 s

T t 8

T L stin

Jan-Mat,

l_n__u_-_____.l.n_-_l

Aptdun,

Jul-Sep.

100 Meters

Oct-Dec

T

f s\

Tt 8w

"’V,

Figure 61.

Cross-shore Line 29, Contributions to Density Variance:
to total density variance (labeled T) by temperature (t), salinity (s), and
their interaction (t/s) arc depicted here by scason at the surface and 100
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V. SUMMARY AND CONCLUSIONS

Salinity has a profound impact on the CCS, with structure that is complex and
variable. In the region of the Columbia River’s outflow, surface salinity rnay vary an
entire psu in 100 km, or 1 psu over the course of a year; yet in this region the depth in-
tegrated importance of the salinity gradient is less important than anywhere else in the
CCS. Off the coast of Baja California, where thermal expansion coefficients are high,
saline contraction coefficients low, and surface salinity gradients have minimal impact
on the density field, the importance of salinity variability 100 m below the suiface is of-
ten equal to the importance of temperature variance. The mean salinity field has been
shown to have a pronounced effect on the large-scale geostrophic circulation of the CCS.
On the other hand, there.seem to be regions on the order of 3° squares where the as-
sumption of constant salinity might not cause significant errors in the estimation of
density gradients. Relative importance of temperature and salinity often changes sea-
sonally. Areas where mean gradients in temperature and salinity have positive corre-
lation in terms of their effect on density border areas of negative covariance of the T-$S
gradients. Despite the existence of correlation in mean gradients, there seems to be little
correlation between simultancously observed values of temperature and salinity.

Based on these observations, it is reasonable to conclude that careful work con-
cerning the CCS should include haline description. Descriptively and dynamically,
salinity is essential to accurately characterize the large-scale structure of the CCS. Evi-
dence has been developed in this study that indicates salinity may play significant roles
in many smaller scale phenomenon as well. There is some indication that there may be
areas where salinity variation may be neglected in process-oriented models, but regions
to be so modeled must be carefully selected.

A. STERIC ANOMALY

A comparison of the constituents of the steric anomaly due to salinity and temper-
ature showed that the gradients in d; and ds oppose generally, major exceptions being
on the surface off the coast of Oregon where the warm, fresh discharge of the Columbia
River leads to large values of d; and d, and off the coast of northern California in

summer, when upwelling of cold. salty water leads to low values for both é; and ;.
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In areas where , is highly correlated with 4, and has similar variance, é, might be
considered an adequate estimator of 4. A small, shallow region with these characteristics
was identified off the coast of northern Baja California.

Using the idea of RMSE to calculate mean differences from the steric anomaly, &,
of §5; and &;, the contributions to mean gradient in & associated with d; and 6, were
compared. Ou the large scale, d; is quite important and certainly should not be ignored.
On the other hand, the contribution of salinity is fairly evenly distributed and so, as the
amount of area considered decreases, the relative magnitude of error in gradient resulting
from the assumption of constant salinity also decreases. For example, assumption of a
constant value of salinity for the entire CCS in July would result in an approximate
overestimate of 40 percent in the alongshore south to north mean ¢ gradient. However,
if only the area adjacent to the California coast is considered, a 10 percent error results.

B. DYNAMIC HEIGHT

Calculating dynamic height, ®, by integrating é over depth, and comparing it to
Oy, , caiculated by integrating 6, , provided insight concerning the importance of
salinity variation to the geostrophic flow field. At all depths, the mean variability of
salinity in the CCS is responsible for a significant equatorward component along the
coast of California and a strong offshore component adjacent to Baja. Additionally
mean local salinity gradients can play a major role in the structure of small scale
features.

C. VARIANCE IN THE DENSITY FIELD

By calculating temperature and salinity variances and covariances and differentiating
the equation of state, contributions to local variation in density due to salinity, temper-
ature, and their interaction were computed directly. Temperature variation provided the
major contribution vear-round on the surface. Salinity’s importance generally increased
with depth so that at 500 m, salinity variance might actually be most significant. Sub-
stantial variance in the density ficld existed even at 500 m in locations that correspond
to the CC and CU, indicating dynamic activity was occurring at 500 m, and perhaps
that, as Lynn and Simpson (1989) have suggested, the CCS can extend deeper than
500 m, and that at deeper depths it may be traceable by salinity variance.

By applying this technique to the mean temperature and salinity field, the relative
contribuition to longshore and cross-shore gradient was determined. Nearshore, or
elsewhere in the vicinity of river drainage (Figure 52), variance is generally high and
saline contribution considerable. There is a tendency for high variance to occur in tae
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autumn (defined here as October through December, Figure 57) due apparently to sur-
face cooling. Offshore this cooling and associated mixing tend to decouple the surface
layer and allow greater density variation at deeper depths, at least 100 m.
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VI. RECOMMENDATIONS

A. PROFILE

The information developed in this research should be.displayed in vertical sections.
The organizational techniques emploved here would allow alongshore, cross-shore, or
diagonal lines to be displayed easily in vertical cross section. Study of these sections
would allow fuller appreciation of the three dimensiona! interaction of temperature and
salinity in the CCS. Perhaps sections of the contribution of salinity to density variance
could be used with the ideas of Lynn and Simpson (1989) concerning "spiciness” to gain
a fuller understanding of the water mass structure of the CCS.

B. FINER RESOLUTION

This analysis has been carried out at a 1° spatial by 1 month temporal scale, and so
allows only large-scale resolution. A much finer scale approach, perhaps 1,2° by 2
weeks, might be possible in certain regions. Using similar processing techniques and
finer resolution, if every depth level were analyzed, rather than the few depths empha-
sized here, the T-S interplay associated with small scale phenomena such as coastal
upwelling might be characterized.

C. MODELING CONSIDERATIONS

Speculation has been offered here concerning the validity of the assumption of
constant salinity for the purpose of dynamic modeling. Ideally, the mean salinity data
processed for this study should be incorporated into a CCS model run and results com-
pared to similar runs in which salinity was held constant. On the other hand, indications
of the effects of salinity might be achieved with less effort by using a temperature-driven
linearization of density that simuiates saline variability. For example, increasing the
magnitude of the thermal expansion coefficient, «, in an upwelling process model may
capture the effect of a positive [-S covariance on density. Entering different values of
o for different regions and depths (higher values where covariance is positive, lower val-
ues where negative) would simulate salinity’s variation over regions where salinity or
temperature eflects change sign. Usc of a constant valuc of a over a range of temper-
atures, in addition to ignoring saline contribution, can superimpose a false smoothing
tendency, resulting in an underestimation of the magnitude of positive Ap in cold water,
and negative Ap in warm water. Forcing o to change more or less uniformly
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meridionally but at a higher rate than warranted by the mean temperature gradient
would allow study of the combined effects of meridional saline variation and smoothing.

Because salinity measurements are more expensive to make and more difficult to
obtain than temperature observations, it may be desirable to estimate salinity from a
known temperature-salinity (T-S) correlation (Stommel, 1947). Emery (1975) has shown
that the accuracy of dynamic height calculations made from such derived salinities can,
at least in some cases, be comparable to the accuracy of determinations made from ob-
served salinities. In thesc cases, the salinity field in general can be accurately inferred
from expendable bathythermograph observations alone, as Rienecker ez al. {1985) have
attempted.

The validity of such salinity inferences depends completely on the strength of the
T-S correlation, or what Stommel (1947) called "range of uncertainty”, i.e., the
“tightness” of a particular T-S curve. This uncertainty in differential salinity can be re-
lated to:

J=r2)x (AS?, (17)

where AS is determined from the T-S curve, r, is the cocfficient of determination for
temperature and salinity, and (1 — »2) is the {raction of salinity variance that cannot be
explained by temperature variance. Clearly the uncertainty incrcases as the strength of
the correlation (and magnitude of 12) decreases. Therefore, it may be reasonable to ex-
pect the method of salinity inference {rom T-S relationship to be most accurate in re-
gions of highest T-S correlations. and least accurate in regions where the T-S correlation
is weak. Blumberg er al. (1984) concluded that development of T-S curves for the CCS
would not be cost effective for modeling efforts duc to combinations of relatively poor
T-S correlations inherent in near surface waters (less than 200 m), and lack of significant
numbers of temperature observations in decper areas where the idea might otherwise
work.

Preliminary investigations have been made to determine seasonal values of the T-S
correlation (i.e., coefficients of determination) at 10, 100, 200 and 500 m. Even at
500 m. arcas where temperature variance has as much as a 30 percent linear relationship
with salinity are rarc (Figure 62), and those arcas arc not constant {from month to
month. This resuit strongly supports the statements of Blumberg e all (1984). A
modeler might be served as well by using salinity climatology as by attempting to pre-
scribe the  salinity  field  based  on its relationship with temperature. An
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observationalist should probably take full CTD casts to determine the salinity in the
CCS. Calculations could be performed to confirm these statements.

The geographic distribution of salinity in the CCS may be sufficiently linear, at least
regionally, to allow worthwhile use of linear regression coefficients on latitude, longitude
and;or depth. Sums required by least squares techniques. to compute statistically sig-
nificant coefficients of such a regression equation are easily obtainable through tech-
niques used in this studv. Model runs using the resulting salinity parameterization
would be instructive, as would the shorthand description of the salinity field represented
by the parameterization itself. If results of any of these model runs differ significantly
from corresponding constant salinity runs, decisions concerning the best method to

include salinity could be made.

D. SOUND SPEED CALCULATIONS

Salinity is a variable in the equation for sound speed in seawater but is generally
estimated by a climatological mean when tactical acoustic range predictions are com-
puted. The considerable database now available in the CCS should allow a numerical

cvaluation of the validity of such a parameterization.
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Coefficient of Determination (T-S), Summer, 500 m: r} (the algebraic

sign- is obtained from covariance, and "99” indicates a bad data proc-

essing point).
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APPENDIX A. NUMBER OF OBSERVATIONS

This appendix provides plots of the number of observations associated with each
data block (for those data blocks having at least ten observations) for the months
January, April, July, and October and the depths 10 and 500 m.
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APPENDIX B. SMALL SCALE EFFECTS OF SALINITY ON DYNAMIC
HEIGHT

In addition to introducing the general large-scale biases to the estimated
geostrophic flow field discussed in section IVE, the ®,,, estimator may misrepresent
some smaller scale features. The December mean @ map shows a strong closed cyclonic
circulation near 30° N, 121° W, The December mean Oy, field also shows a strong
cyclonic feature at that point, indicating a thermal front as the probable cause of the
enhanced flow. However, the difference map for the period also places a cyclonic cir-
culation at that location, showing the front to be haline as well as thermal.

In April a closed cyclone again appears on the @' map, this time near 32° N,
123° W. Here the Oy, map shows only weak cyclonic turning in basically onshore flow.
The corresponding @ map indicates strong horizontal cyclonic shear in the region. In
this case, changes in salinity over a relatively small distance induce considerable shear
in the mean field. This feature would be missed entirely by an estimate based on tem-
perature variation alone.

In May a similar cyclonic anomaly appears on the @' map near 36° N, 127° W,
The & field shows a strong ridge at 37° 30* N and a strong trough at 36° N, while the
d,,, map shows a trough at 37.5°N and a ridge at 36.5°N. Admittedly the scale of this
mean feature is near the resolvable limit, and some critical mean values of ® have been
determined from relatively few casts. However, if the feature is correctly represented, it
demonstrates the importance of salinity as a modifier of the effects of temperature. It
is interesting that @ (200;500) and ®,,, (200/500) contours, by contrast, are in phase in
this area. Analysis of the May salinity distribution over the area of interest shows sharp
salinity gradients at the surface and less pronounced gradients at depth. Consequently,
the inferred flow fields are consistent.
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